Top1: pada sebuah lampu pijar tertulis data 20 watt, 220 volt - Brainly. Pengarang: Peringkat 104 Ringkasan: . ini kak tolong ini untuk hari ini buatin soal tentang getaran sama jawaban nya kak, sama penjelasan nya makasihh . bantu dong kak, kasih cara juga makasih buat yang udah bantu . sebuah benda bermassa 20 kg mengalami jatuh bebas dari ketinggian awal 200 dpl menjadi Jelaskanbagaimana terjadinya masing-masing muatan tersebut. 3. Adalah lebih mudah bagi elektron untuk pindah melalui udara lembab daripada udara kering. Oleh karena alasan tersebut, kawat listrik yang pada umumnya terbuat dari tembaga merupakan konduktor yang baik. Perak juga menghantarkan listrik amat baik, namun perak jauh lebih mahal Jadi A 2 = ¼A 1. Hambatan jenis kedua dari penghantar tersebut dapat dicari dengan menggunkan rumus seperti: R = ρl/A ρl = R.A. Dalam hal ini panjang dan hambatan jenis kawat sama, oleh karena itu: (ρl) 1 = (ρl) 2 R 1 A 1 = R 2 A 2 20 Ω A 1 = R 2 x ¼ A 1 R 2 = 4 x 20 Ω R 2 = 80 Ω. 3. Diketahui sebuah kawat dengan luas penampang 0,000. KoefisienSuhu terhadap Resistansi (hambatan-tahanan-resistivitas) Dalam teknik listrik atau elektronik, ketika aliran arus supply melalui kawat maka akan panas karena resistansi atau hambatan kawat. Dalam kondisi sempurna, resistansi harus '0' namun itu tidak terjadi. Ketika kawat menjadi panas, maka resistansi kawat berubah sesuai dengan suhu. ContohSoal: 1.Suatu nikelin dengan panjang 100 m, dengan diameter 2 mm, hitunglah nilai hambatan! Jawab : Diketahui : ρ kawat nikelin = 0,42 (Ω mm 2 /m) d = 2 mm r = 1 mm Bahankonduktor padat merupakan suatu bahan yang sukar berubah bentuk dan memiliki sifat baik dalam menghantarkan listrik. Berikut ini contoh bahan konduktor yang berwujud padat. 1. Tembaga. Tembaga termasuk bahan konduktor yang memiliki tahanan rendah, daya hantar listrik 57 m/Ohm.mm2 pada suhu 20 oC dengan koefisien muai suhu 0,004 / oC. Persamaandaya listrik (Arsip Zenius) P itu adalah daya listrik, V adalah tegangan, dan I adalah kuat arus. Dalam proses transmisi energi, daya listrik itu selalu konstan (ingat bahwa daya itu adalah energi per satuan waktu. Karena energi itu kekal, maka dayanya juga harus kekal selama tidak berubah menjadi energi bentuk lain). 6MLpJ24. Rumus Daya Listrik – Pengertian, Hambatan, Tetangan Dan Contoh – – Daya Listrik atau dalam bahasa Inggris disebut dengan Electrical Power adalah jumlah energi yang diserap atau dihasilkan dalam sebuah sirkuit/rangkaian. Sumber Energi seperti Tegangan listrik akan menghasilkan daya listrik sedangkan beban yang terhubung dengannya akan menyerap daya listrik tersebut. Dengan kata lain, Daya listrik adalah tingkat konsumsi energi dalam sebuah sirkuit atau rangkaian listrik. Kita mengambil contoh Lampu Pijar dan Heater Pemanas, Lampu pijar menyerap daya listrik yang diterimanya dan mengubahnya menjadi cahaya sedangkan Heater mengubah serapan daya listrik tersebut menjadi panas. Semakin tinggi nilai Watt-nya semakin tinggi pula daya listrik yang dikonsumsinya. Sedangkan berdasarkan konsep usaha, yang dimaksud dengan daya listrik adalah besarnya usaha dalam memindahkan muatan per satuan waktu atau lebih singkatnya adalah Jumlah Energi Listrik yang digunakan tiap detik. Berdasarkan definisi tersebut, perumusan daya listrik adalah seperti dibawah ini P = E / t Dimana P = Daya Listrik E = Energi dengan satuan Joule t = waktu dengan satuan detik Dalam rumus perhitungan, Daya Listrik biasanya dilambangkan dengan huruf “P” yang merupakan singkatan dari Power. Sedangkan Satuan Internasional SI Daya Listrik adalah Watt yang disingkat dengan W. Watt adalah sama dengan satu joule per detik Watt = Joule / detik Satuan turunan Watt yang sering dijumpai diantaranya adalah seperti dibawah ini 1 miliWatt = 0,001 Watt 1 kiloWatt = Watt 1 MegaWatt = Watt Baca Juga Listrik Statis Rumus Daya Listrik Rumus umum yang digunakan untuk menghitung Daya Listrik dalam sebuah Rangkaian Listrik adalah sebagai berikut P = V x I Atau P = I2R P = V2/R Dimana P = Daya Listrik dengan satuan Watt W V = Tegangan Listrik dengan Satuan Volt V I = Arus Listrik dengan satuan Ampere A R = Hambatan dengan satuan Ohm Contoh Kasus Perhitungan Daya Listrik Contoh Kasus I Sebuah Televisi LCD memerlukan Tegangan 220V dan Arus Listrik sebesar 1,2A untuk mengaktifkannya. Berapakah Daya Listrik yang dikonsumsinya ? Penyelesaiannya Diketahui V = 220V I = 1,2A P = ? Jawaban P = V x I P = 220V x 1,2A P = 264 Watt Jadi Televisi LCD tersebut akan mengkonsumsi daya listrik sebesar 264 Watt. Baca Juga Akibat Rotasi Bumi Contoh Kasus II Seperti yang terlihat pada rangkaian dibawah ini hitunglah Daya Listrik yang dikonsumsi oleh Lampu Pijar tersebut. Yang diketahui dalam rangkain dibawah ini hanya Tegangan dan Hambatan. Penyelesaiannya Diketahui V = 24V R = 3 P = ? Jawaban P = V2/R P = 242 / 3 P = 576 / 3 P = 192W Jadi daya listrik yang dikonsumsi adalah 192W. Persamaan Rumus Daya Listrik Dalam contoh kasus II, variabel yang diketahui hanya Tegangan V dan Hambatan R, jadi kita tidak dapat menggunakan Rumus dasar daya listrik yaitu P=VI, namun kita dapat menggunakan persamaan berdasarkan konsep Hukum Ohm untuk mempermudah perhitungannya. Hukum Ohm V = I x R Jadi, jika yang diketahui hanya Arus Listrik I dan Hambatan R saja. P = V x I P = I x R x I P = I2R –> dapat menggunakan rumus ini untuk mencari daya listrik Sedangkan penjabaran rumus jika diketahui hanya Tegangan V dan Hambatan R saja. P = V x I P = V x V / R P = V2 / R –> dapat menggunakan rumus ini untuk mencari daya listrik. Baca Juga Besaran Pokok dan Turunan Daya dalam Rangkaian Listrik Selain tegangan dan arus, ada besaran yang diperoleh akibat aktivitas elektron bebas dalam suatu rangkaian listrik, yaitu daya. Pertama-tama, harus diketahui apa pengertian daya sebelum menganalisisnya dalam rangkaian listrik. Daya adalah ukuran seberapa besar kerja yang dapat dilakukan dalam waktu yang diberikan. Definisi kerja umumnya adalah mengangkat sesuatu yang berat melawan gaya gravitasi. Semakin berat dan semakin tinggi benda yang diangkat, maka semakin besar kerja yang dilakukan. Dalam rangkaian listrik, daya merupakan fungsi dari tegangan dan arus. Hubungan daya secara sistematis dapat dirumuskan sebagai berikut Akan tetapi dalam masalah ini daya P sama dengan arus I dikali dengan tegangan E atau sebanding dengan IE. Ketika menggunakan formula ini, satuan besaran daya adalah watt, yang disingkat dengan huruf kapital “W”. Daya merupakan gabungan antara tegangan dan arus dalam rangkaian. Ingat bahwa tegangan adalah kerja tertentu atau energi potensial per satuan muatan, ketika arus adalah laju muatan listrik yang bergerak melalui konduktor. Tegangan analogi dengan kerja yang dilakukan dalam mengangkat beban melawan tarikan gravitasi. Arus analogi dengan kecepatan pada beban yang diangkat. Suatu rangkaian dengan tegangan tinggi dan arus yang rendah mungkin melepaskan jumlah daya yang sama sebagaimana rangkaian dengan tegangan rendah dan arus yang tinggi. Baik nilai tegangan maupun nilai arus menunjukkan besarnya daya dalam rangkaian listrik. Dalam suatu rangkaian terbuka, di mana terdapat tegangan antara terminal sumber dan arus sama dengan nol, maka tidak ada tenaga yang dilepaskan, tak masalah seberapa besar tegangan yang terukur. Karena P=IE dan I=0 dan tegangan dikalikan dengan nol hasilnya adalah nol, maka daya yang dilepaskan dalam rangkaian sama dengan nol. Dengan demikian, jika rangkaian dihubung singkat sehingga tahanan hubung singkat sama dengan nol seperti kawat superkonduktif, dari kondisi seperti ini maka tegangan bernilai nol, sehingga tidak ada daya yang akan dilepaskan. Jika diukur daya dalam satuan “daya kuda” atau satuan “watt”, maka ada hal yang sama dalam satuan tersebut, yaitu seberapa besar kerja yang dapat dilakukan dalam waktu tertentu. Dua satuan tersebut tidak sama secara angka, tetapi dapat dikonversikan antara satu dengan yang lain. Baca Juga Makalah Pemanasan Global Global Warming 1 Daya Kuda Horse Power =745,7 Watt Jika suatu mesin diesel atau mesin sepeda motor 100 daya kuda, maka dapat dinominalkan dengan mesin “74570 watt”. Perhitungan Daya Listrik Sebagaimana telah diketahui pada pembahasan sebelumnya formula untuk menentukan daya dalam rangkaian listrik adalah dengan mengalikan tegangan dalam “volt” arus dalam “amp” sehingga didapat satuan daya dalam “watt”. Contoh perhitungan daya dapat dilihat pada Gambar 1. Gambar 1 Sumber tegangan dan tahanan rangkaian diketahui Dalam rangkaian di atas, dapat diketahui bahwa sebuah baterai dengan tegangan 18 volt dan lampu dengan tahanan 3 . Dengan menggunakan hukum Ohm untuk menentukan arus, di dapat Setelah didapat arus, maka daya dapat ditentukan dengan mengalikannya dengan tegangan sehingga Jadi jawabannnya adalah lampu tersebut melepaskan daya 108 watt, sebagian besar dalam bentuk cahaya dan panas. Baca Juga 1 Kg Berapa Gram Kemudian dengan rangkaian yang sama tegangan baterai dinaikkan untuk melihat apa yang terjadi. Secara gamblang dapat diketahui bahwa arus dalam rangkaian akan meningkat sebagaimana tegangan meningkat dan tahanan lampu tetap sama. Demikian juga, daya akan meningkat juga Gambar 2 Sumber tegangan dinaikkan Sekarang, tegangan baterai adalah 36 volt sebagai ganti 18 volt pada Gambar 1. Lampu tersebut menyediakan tahanan listrik 3 Ohm agar elektron dapat mengalir, sehingga arus menjadi Hal ini karena jika I = E/R, dan nilai E ganda sedangkan R tetap sama dan nilai arus menjadi ganda pula. Nilai arus yang diperoleh adalah 12 Amp dan daya menjadi Perhatikan bahwa daya meningkat sebagaimana yang diperkirakan, tetapi meningkatnya lebih disebabkan oleh arus. Hal ini disebabkan daya merupakan fungsi dari tegangan dikalikan arus, dan baik arus maupun tegangan bernilai ganda dari nilai pada rangkaian sebelumnya, sehingga daya pun meningkat oleh faktor 2 x 2 atau 4. Ini dapat diperiksa dengan membagi 432 Watt dengan 108 Watt dan hasilnya adalah 4. Dengan menggunakan aljabar dapat memanipulasi Persamaan 1, walaupun tidak diketahui salah satu besaran baik itu arus, tegangan atau tahanan. Jika hanya diketahui tegangan E dan tahanan R Jika kita hanya mengetahui arus I dan tahanan R, maka Menurut catatan sejarah bahwa James Prescott Joule, bukan Georg Simon Ohm, yang pertama kali menemukan hubungan matematis antara pelepasan daya dan arus yang melalui tahanan. Penemuan ini diterbitkan dalam tahun 1841, diikuti dengan formulasi terakhir P=I2R, dan tepatnya dikenal dengan hukum Joule. Akan tetapi persamaan daya ini sangat umum jika dihubungkan dengan persamaan hukum Ohm yang berhubungan dengan tegangan, arus dan tahanan E=IR ; I=E/R dan R=E/I sehingga sering ditujukan kepada Ohm sebagai penghargaan. Artikel kali ini lebih saya tujukan kepada orang awam yang ingin mengenal dan mempelajari teknik listrik ataupun bagi mereka yang sudah berkecimpung di dalam teknik elektro untuk sekedar mengingat kembali teori-teori dasar listrik. Baca Juga Listrik Dinamis 1. Arus Listrik adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere. Arus listrik bergerak dari terminal positif + ke terminal negatif -, sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif - ke terminal positif+, arah arus listrik dianggap berlawanan dengan arah gerakan elektron. Gambar 1. Arah arus listrik dan arah gerakan elektron. “1 ampere arus adalah mengalirnya elektron sebanyak 624×10^16 6,24151 × 10^18 atau sama dengan 1 Coulumb per detik melewati suatu penampang konduktor” Formula arus listrik adalah I = Q/t ampere Dimana I = besarnya arus listrik yang mengalir, ampere Q = Besarnya muatan listrik, coulomb t = waktu, detik 2. Kuat Arus Listrik Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu. Definisi “Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik”. Rumus – rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu Q = I x t I = Q/t t = Q/I Dimana Q = Banyaknya muatan listrik dalam satuan coulomb I = Kuat Arus dalam satuan Amper. t = waktu dalam satuan detik. “Kuat arus listrik biasa juga disebut dengan arus listrik” “muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb C”, muatan proton +1,6 x 10^-19C, sedangkan muatan elektron -1,6x 10^-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik” Baca Juga Kromatografi Adalah 3. Rapat Arus Difinisi “rapat arus ialah besarnya arus listrik tiap-tiap mm² luas penampang kawat”. Gambar 2. Kerapatan arus listrik. Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm², maka kerapatan arusnya 3A/mm² 12A/4 mm², ketika penampang penghantar mengecil 1,5mm², maka kerapatan arusnya menjadi 8A/mm² 12A/1,5 mm². Kerapatan arus berpengaruh pada kenaikan temperatur. Suhu penghantar dipertahankan sekitar 300°C, dimana kemampuan hantar arus kabel sudah ditetapkan dalam tabel Kemampuan Hantar Arus KHA. Tabel 1. Kemampuan Hantar Arus KHA Berdasarkan tabel KHA kabel pada tabel diatas, kabel berpenampang 4 mm², 2 inti kabel memiliki KHA 30A, memiliki kerapatan arus 8,5A/mm². Kerapatan arus berbanding terbalik dengan penampang penghantar, semakin besar penampang penghantar kerapatan arusnya mengecil. Rumus-rumus dibawah ini untuk menghitung besarnya rapat arus, kuat arus dan penampang kawat J = I/A I = J x A A = I/J Dimana J = Rapat arus [ A/mm²] I = Kuat arus [ Amp] A = luas penampang kawat [ mm²] 4. Tahanan dan Daya Hantar Penghantar Penghantar dari bahan metal mudah mengalirkan arus listrik, tembaga dan aluminium memiliki daya hantar listrik yang tinggi. Bahan terdiri dari kumpulan atom, setiap atom terdiri proton dan elektron. Aliran arus listrik merupakan aliran elektron. Elektron bebas yang mengalir ini mendapat hambatan saat melewati atom sebelahnya. Akibatnya terjadi gesekan elektron denganatom dan ini menyebabkan penghantar panas. Tahanan penghantar memiliki sifat menghambat yang terjadi pada setiap bahan. Tahanan didefinisikan sebagai berikut “1 satu Ohm adalah tahanan satu kolom air raksa yang panjangnya 1063 mm dengan penampang 1 mm² pada temperatur 0° C” Daya hantar didefinisikan sebagai berikut “Kemampuan penghantar arus atau daya hantar arus sedangkan penyekat atau isolasi adalah suatu bahan yang mempunyai tahanan yang besar sekali sehingga tidak mempunyai daya hantar atau daya hantarnya kecil yang berarti sangat sulit dialiri arus listrik”. Rumus untuk menghitung besarnya tahanan listrik terhadap daya hantar arus R = 1/G G = 1/R Dimana R = Tahanan/resistansi [ /ohm] G = Daya hantar arus /konduktivitas [Y/mho] Gambar 3. Resistansi Konduktor Tahanan penghantar besarnya berbanding terbalik terhadap luas penampangnya dan juga besarnya tahanan konduktor sesuai hukum Ohm. “Bila suatu penghantar dengan panjang l , dan diameter penampang q serta tahanan jenis ρ rho, maka tahanan penghantar tersebut adalah” R = ρ x l/q Dimana R = tahanan kawat [ /ohm] l = panjang kawat [meter/m] l ρ = tahanan jenis kawat [mm²/meter] q = penampang kawat [mm²] Faktot-faktor yang mempengaruhi nilai resistant atau tahanan, karena tahanan suatu jenis material sangat tergantung pada panjang penghantar. luas penampang konduktor. jenis konduktor . temperatur. “Tahanan penghantar dipengaruhi oleh temperatur, ketika temperatur meningkat ikatan atom makin meningkat akibatnya aliran elektron terhambat. Dengan demikian kenaikan temperatur menyebabkan kenaikan tahanan penghantar” 5. Potensial atau Tegangan Potensial listrik adalah fenomena berpindahnya arus listrik akibat lokasi yang berbeda potensialnya. dari hal tersebut, kita mengetahui adanya perbedaan potensial listrik yang sering disebut “potential difference atau perbedaan potensial”. satuan dari potential difference adalah Volt. “Satu Volt adalah beda potensial antara dua titik saat melakukan usaha satu joule untuk memindahkan muatan listrik satu coulomb” Formulasi beda potensial atau tegangan adalah V = W/Q [volt] Dimana V = beda potensial atau tegangan, dalam volt W = usaha, dalam newton-meter atau Nm atau joule Q = muatan listrik, dalam coulomb Rangkaian Listrik Pada suatu rangkaian listrik akan mengalir arus, apabila dipenuhi syarat-syarat sebagai berikut 1. Adanya sumber tegangan 2. Adanya alat penghubung 3. Adanya beban Gambar 4. Rangkaian Listrik. Pada kondisi sakelar S terbuka maka arus tidak akan mengalir melalui beban . Apabila sakelar S ditutup maka akan mengalir arus ke beban R dan Ampere meter akan menunjuk. Dengan kata lain syarat mengalir arus pada suatu rangkaian harus tertutup. Cara Pemasangan Alat Ukur Pemasangan alat ukur Volt meter dipasang paralel dengan sumber tegangan atau beban, karena tahanan dalam dari Volt meter sangat tinggi. Sebaliknya pemasangan alat ukur Ampere meter dipasang seri, hal inidisebabkan tahanan dalam dari Amper meter sangat kecil. “alat ukur tegangan adalah voltmeter dan alat ukur arus listrik adalah amperemeter” Hukum Ohm Pada suatu rangkaian tertutup, Besarnya arus I berubah sebanding dengan tegangan V dan berbanding terbalik dengan beban tahanan R, atau dinyatakan dengan Rumus I = V/R Hukum Kirchoff Pada setiap rangkaian listrik, jumlah aljabar dari arus-arus yang bertemu di satu titik adalah nol I=0. Gambar 5. loop arus“ KIRChOFF “ Jadi I1 + -I2 + -I3 + I4 + -I5 = 0 I1 + I4 = I2 + I3 + I5 Teori Dasar Listrik Tahanan Dari Penghantar Listrik Semua bahan bagaimanapun murninya selalu mempunyai tahanan listrik, yang mana tahanan ini tergantung tahanan jenis ρ bahan itu sendiri. Tahanan tersebut tergantung dari bahan; berbanding lurus dengan panjang dan berbanding terbalik dengan penampang penghantar tersebut. Temperatur juga akan mempengaruhi besarnya tahanan. Baik atau buruknya tahanan suatu penghantar ditentukan oleh; Tahanan Jenis ρ = Rho ρ = adalah menunjukkan tahanan darin suatu penghantar panjang 1 meter, penampang 1 mm2 pada suhu 20 o C. Satuan dari nilai ini adalah ohm milimeter kwadrat permeter . A= 1mm2 pada 20 o C panjang l= 1 m Daya Hantar = Kappa א = adalah bilangan yang menunjukkan panjang dalam meter dari sebuah penghantar yang penampangnya 1 mm2 dan tahanannya 1 . Nilai daya hantar adalah kebalikan dari tahanan jenis, yaitu = Nilai daya hantar adalah bermacam-macam tergantung dari bahannya. Pada umumnya adalah kita menghitung dengan; Contoh Daya hantar tembaga adalah Hitung tahanan jenis tembaga ? Jawab = →ρ = = Catatan Makin tinggi tahanan jenis serta makin panjang penghantarnya dan makin kecil penampangnya adalah = makin tinggi tahanan dari penghantarnya. Tahanan jenis harganya 0,01786 atau Hantaran jenis harganya 56 atau kebalikan dari tahanan jenis dimana; R = Tahanan atau hambatan = Tahanan jenis = Daya hantar l = Panjang m A = Luas mm2 . Hambatan adalah gesekan atau rintangan yang diberikan suatu bahan terhadap suatu aliran arus. Hambatan itu antara lain ; lampu, kumparan, elemen panas, dsb. Ukuran semua jenis kawat telanjang biasanya diameternya Ф dalam mm. Ukuran penghantar jenis kawat berisolasi biasanya penampang dalam mm2. Demikian penjelasan artikel diatas tentang Rumus Daya Listrik – Pengertian, Hambatan, Tetangan Dan Contoh semoga dapat bermanfaat bagi pembaca setia Dalam teknik listrik atau elektronik, ketika aliran arus supply melalui kawat maka akan panas karena resistansi atau hambatan kawat. Dalam kondisi sempurna, resistansi harus '0' namun itu tidak terjadi. Ketika kawat menjadi panas, maka resistansi kawat berubah sesuai dengan suhu. Meskipun itu disukai bahwa resistansi harus tetap stabil & itu harus independen untuk suhu. Jadi, perubahan resistansi untuk setiap perubahan derajat dalam suhu disebut sebagai temperatur koefisien resistansi TCR. Secara umum, ini dilambangkan dengan simbol alpha α. TCR dari logam murni positif karena ketika suhu meningkat maka resistansi atau hambatan akan meningkat. Oleh karena itu, untuk membuat resistansi yang sangat akurat di mana resistansi tidak mengubah paduan diperlukan. Apa itu Koefisien Suhu terhadap Resistansi? Kita tahu bahwa ada banyak material dan mereka memiliki beberapa resistansi. Resistansi perubahan material berdasarkan variasi suhu. Hubungan utama antara suhu yang diubah & suhu yang dimodifikasi dapat diberikan oleh parameter yang disebut TCR Temperatur Coefficient of resistansi. Itu ditandai dengan simbol α alpha. Berdasarkan bahan yang diperoleh, TCR dipisahkan menjadi dua jenis seperti koefisien suhu resistansi positif PTCR dan koefisien suhu resistansi negatif NTCR. Pada TCR positif, ketika suhu meningkat, maka resistansi material akan meningkat. Misalnya, dalam konduktor ketika suhu meningkat maka resistansi juga meningkat. Untuk paduan seperti konstantan & manganin, resistansi cukup rendah pada kisaran suhu tertentu. Untuk semikonduktor seperti isolator karet, kayu, silikon & germanium & elektrolit, resistansi berkurang maka suhu akan meningkat sehingga mereka memiliki TCR negatif. Dalam konduktor logam, ketika suhu meningkat maka resistansi akan meningkat karena faktor-faktor yang meliputi berikut ini. Langsung pada resistansi awal Naiknya suhu. Berdasarkan kehidupan material. Formula rumus untuk Koefisien Suhu terhadap Resistansi Resistansi konduktor dapat dihitung pada suhu tertentu dari data suhu, itu TCR, resistansi pada suhu khas & pengoperasian suhu. Secara umum, koefisien suhu dari rumus resistansi dapat dinyatakan sebagaiR = Rref 1 + α T − Tref Dimana 'R' adalah resistansi pada 'T' temperatur atau suhu 'R ref ' adalah resistansi pada 'Tref' temperatur atau suhu 'α' adalah TCR dari material 'T' adalah suhu material dalam ° Celcius 'Tref' adalah suhu referensi yang digunakan untuk menyatakan koefisien suhu. SI unit koefisien suhu terhadap resistivitas adalah per celsius derajat atau /°C Unit koefisien suhu terhadap resistansi adalah ° Celcius Biasanya, TCR koefisien suhu terhadap resistansi konsisten dengan suhu 20°C. Jadi biasanya suhu ini diambil sebagai suhu ruangan normal. Dengan demikian koefisien suhu derivasi resistansi biasanya mengambil ini ke dalam deskripsiR = R20 1 + α20 T − 20 Dimana 'R20' adalah resistansi pada 20°C 'α20' adalah TCR pada 20°C TCR dari resistor adalah positif, negatif atau konstan pada kisaran suhu tetap. Memilih Resistor yang tepat dapat menghentikan kebutuhan kompensasi suhu. TCR besar diperlukan untuk mengukur suhu di beberapa aplikasi. Resistor yang dimaksudkan untuk aplikasi ini dikenal sebagai termistor, yang memiliki PTC koefisien suhu positif atau NTC koefisien suhu negatif. Koefisien Suhu Positif dari Resistansi PTC mengacu pada beberapa bahan yang mengalami suhu sekali naik maka resistansi atau hambatan listrik juga meningkat. Bahan-bahan yang memiliki koefisien lebih tinggi kemudian menunjukkan kenaikan cepat dengan suhu. Bahan PTC dirancang untuk mencapai suhu tertinggi yang digunakan untuk tegangan input daya yang diberikan karena pada titik tertentu ketika suhu meningkat maka resistansi listrik akan meningkat. Koefisien suhu positif dari bahan-bahan resistansi secara mandiri tidak seperti bahan NTC atau pemanasan resistansi linier. Beberapa bahan seperti karet PTC juga memiliki koefisien suhu yang meningkat secara eksponensial Koefisien Suhu Negatif dari Resistansi NTC mengacu pada beberapa bahan yang mengalami setelah suhu mereka naik maka resistansi atau hambatan listrik akan berkurang. Bahan yang memiliki koefisien lebih rendah maka mereka menunjukkan penurunan cepat dengan suhu. Bahan NTC terutama digunakan untuk membuat pembatas arus, termistor, dan sensor suhu. Metode Pengukuran TCR TCR dari sebuah resistor dapat diputuskan dengan menghitung nilai resistansi pada kisaran suhu yang sesuai. TCR dapat diukur ketika kemiringan normal dari nilai resistansi berada di atas interval ini. Untuk hubungan linier, ini tepat karena koefisien suhu resistansi stabil pada setiap suhu. Tapi, ada beberapa bahan yang memiliki koefisien seperti non-linear. Sebagai contoh, Nichrome adalah paduan populer yang digunakan untuk resistor, dan hubungan utama antara TCR dan suhu tidak linier. Karena TCR diukur seperti kemiringan normal, maka sangat signifikan untuk mengidentifikasi interval TCR & suhu. TCR dapat dihitung dengan menggunakan metode standar seperti teknik MIL-STD-202 untuk rentang suhu dari -55°C hingga 25°C dan 25°C hingga 125°C. Karena nilai terhitung maksimum diidentifikasi sebagai TCR. Teknik ini sering memberi efek di atas yang menunjukkan resistor yang ditujukan untuk aplikasi dengan tuntutan rendah. Koefisien Suhu terhadap Resistansi untuk Beberapa Bahan TCR untuk beberapa bahan pada suhu 20°C tercantum di bawah ini. Untuk bahan Perak Ag, TCR adalah Untuk bahan Tembaga Cu, TCR adalah Untuk bahan Emas Au, TCR adalah Untuk bahan Aluminium Al, TCR adalah Untuk bahan Tungsten W, TCR adalah Untuk bahan Besi Fe, TCR adalah Untuk bahan Platinum Pt, TCR adalah Untuk bahan Manganin Cu = 84% + Mn = 12% + Ni = 4%, TCR adalah Untuk bahan Merkuri Hg, TCR adalah Untuk bahan Nichrome Ni = 60% + Cr = 15% + Fe = 25%, TCR adalah Untuk bahan Constantan Cu = 55% + Ni = 45%, TCR adalah Untuk bahan Karbon C, TCR adalah - Untuk bahan Germanium Ge, TCR adalah - Untuk bahan Silicon Si, TCR adalah - Untuk bahan Brass Cu = 50 - 65% + Zn = 50 - 35%, TCR adalah Untuk bahan Nikel Ni, TCR adalah Untuk bahan Timah Sn, TCR adalah Untuk bahan Zinc Zn, TCR adalah Untuk bahan Mangan Mn, TCR adalah Untuk bahan Tantalum Ta, TCR adalah Eksperimen TCR Percobaan Koefisien suhu terhadap resistansi dijelaskan di bawah ini. Objektif Tujuan utama dari percobaan ini adalah untuk menemukan TCR dari kumparan atau coil yang diberikan. Peralatan Peralatan percobaan ini terutama mencakup kabel penghubung, jembatan foster Carey, kotak resistansi, akumulator timbal, kunci satu arah, resistor rendah yang tidak diketahui, joki, galvanometer, dll. Deskripsi Jembatan foster Carey terutama mirip dengan jembatan meter karena jembatan ini dapat dirancang dengan 4 resistansi seperti P, Q, R & X dan ini terhubung satu sama lain. Pada jembatan Wheatstone di atas, galvanometer G, akumulator timbal E & keys galvanometer dan akumulator masing-masing adalah K1 & K. Jika nilai resistansi diubah maka tidak ada aliran arus melalui 'G' dan resistansi yang tidak diketahui dapat ditentukan oleh salah satu dari tiga resistansi yang diketahui seperti P, Q, R & X. Hubungan berikut digunakan untuk menentukan resistansi yang tidak = R/X Jembatan foster Carey dapat digunakan untuk menghitung perbedaan antara dua resistansi yang hampir sama & mengetahui nilai satu, nilai lainnya dapat dihitung. Di jembatan jenis ini, resistansi atau hambatan terakhir dihilangkan dalam perhitungan. Ini adalah manfaat dan karenanya dapat dengan mudah digunakan untuk menghitung resistansi yang diketahui. Resistansi yang sama seperti P&Q terhubung di celah internal 2 & 3, resistansi khas 'R' dapat dihubungkan dalam gap1 & 'X' resistansi tidak diketahui terhubung dalam gap4. ED adalah panjang penyeimbang yang dapat dihitung dari ujung 'E'. Menurut prinsip Jembatan WhetstoneP/Q = R + a + l1ρ/X + b + 100- l1 ρ Dalam persamaan di atas, a & b adalah modifikasi ujung pada ujung E & F & adalah resistansi atau hambatan untuk panjang setiap unit pada kabel jembatan. Jika pengujian ini berlanjut dengan mengubah X & R, panjang penyeimbang 'l2' dihitung dari ujung = X + a + 12 ρ/R + b + 100-12 ρ Dari dua persamaan di atas,X = R + ρ 11 -12 Misalkan l1 & l2 adalah panjang penyeimbang setelah pengujian di atas dilakukan melalui resistansi khas 'r', bukan 'R' & bukannya X, strip tembaga lebar dari '0' = r + ρ 11 '-12' atau ρ = r/11 '-12' Jika resistansi coil adalah X1 & X2 pada suhu seperti t1°c & t2°c, maka TCR adalahΑ = X2 - X1/X1t2 - X2t1 Dan juga jika resistansi coil adalah X0 & X100 pada suhu seperti 0°c & 100°c, maka TCR adalahΑ = X100 - X0/X0 x 100 Jadi, ini semua tentang koefisien resistansi suhu. Dari informasi di atas akhirnya, kita dapat menyimpulkan bahwa ini adalah perhitungan modifikasi dalam setiap zat resistansi atau hambatan listrik untuk setiap tingkat perubahan suhu. - Tahukah kamu dari mana asal listrik di rumahmu? Rumahmu mendapatkan listrik yang dialirkan dari pembangkit listrik. Namun bukankah pembangkit listrik berada jauh dari rumah, lantai bagaimana bisa listrik mengalir sangat jauh? Listrik dapat mengalir sangat jauh jika dibantu oleh suatu listrik pada dasarnya adalah aliran elektron. Jika ada potensial positif daerah dengan banyal elektron da nada potensial negatif daerah dengan sedikit elektron, elektron akan mengalir ke daerah negatif dan terjadilah arus berdasarkan konduktivitas listriknya dibedakan menjadi isolator, konduktor, dan semikonduktor. Konduktivitas adalah sifat yang memungkinkan suatu bahan untuk menghantarkan listrik. Baca juga Musim Hujan, Lindungi Kendaraan dengan Cairan Isolator NURUL UTAMI Pita energi bahan konduktor, semikonduktor, dan isolator Isolator Dilansir dari Encyclopaedia Britannica, isolator adalah bahan yang menghalangi arus listrik sehingga tidak bisa menghantarkan listrik. Terlihat pada gambar bahwa bahan isolator memiliki bandgap atau jurang pembatas dimana elektron tidak cukup kuat untuk melompatinya sehingga aliran listrik terhenti. Resistansi atau hambatan listrik merupakan salah satu komponen penting dalam sebuah rangkaian elektronika. Untuk itu, kita akan bahas tuntas terkait dengan resistansi mulai dari pengertian, jenis, rumus, nila, persamaan, hingga simbol dari resistansi. Pastikan Anda memahami materi kali ini dengan membaca sampai tuntas. Resistansi adalah hambatan listrik atau indikator yang merupakan gaya melawan aliran arus. Itulah sedikit definisi mengenai resistansi yang paling umum. Untuk pembahasan selengkapnya, mari kita simak mulai dari jenis-jenis resistansi, rumus, hingga nilai-nilai resistansi berikut ini. Jenis – jenis Resistansi Jenis – jenis Resistansi Secara sederhana, komponen yang satu ini bekerja ketika elektron berbeda dengan dua terminal. Maka, listrik akan mulai mengalir ke tempat yang posisinya lebih rendah. Intinya, jika hambatan besar, maka arus akan menjadi semakin kecil. Begitu juga sebaliknya saat hambatan nilainya lebih kecil, maka arus akan semakin besar. Ada 3 jenis resistansi, diantaranya adalah Resistansi Penghantar. Resistansi Sambungan. Resistansi Suhu. Adapun penjelasan lebih detail dari masing-masing jenis hambatan listrik diatas dapat Anda simak dibawah ini. 1. Resistansi Penghantar Terdapat 3 jenis resistansi berdasarkan penghantarnya, diantara lain yaitu – Konduktor Konduktor adalah benda yang bersifat sebagai penghantar listrik yang baik karena mempunyai resisitivitas yang rendah. contohnya adalah tembaga, emas, besi, perak dll. – Isolator Isolator adalah benda yang memiliki sifat tidak dapat mengantarkan listrik dikarenakan memiliki nila risistivitas yang tinggi. Contohnya yakni plastik, karet, kertas, dan kaca. – Semikonduktor Semikonduktor adalah benda yang memiliki kedua sifat dari konduktor dan isolator. Contohnya yaitu silikon dan germanium. 2. Resistansi Sambungan Resistansi Sambungan adalah hambatan yang terjadi karena penyambungan antar komponen dalam sebuah rangkaian. Contohnya seperti sambungan antara kabel dan terminal baterai yang longgar sehingga menyebabkan panas pada suatu rangkaian. 3. Resistansi Suhu Resistansi suhu adalah hambatan listrik yang dapat dipengaruhi oleh naik turunnya suhu. Jadi, apabila suhu naik maka nilai hambatan juga ikut naik. Contoh dari jenis resistansi ini adalah pada saat kita mengecas HP, semakin bertambahnya baterai maka akan terjadi penurunan kecepatan dalam pengisian akibat terjadinya overheat pada suhu HP tersebut. Rumus Resistansi Rumus Resistansi Rumus resistansi sama dengan tegangan atau arus yang masuk. Sering juga disebut dengan istilah Hukum Ohm. Maksudnya yakni tegangan bertahan konstan maka arus penyebut meningkat dan menyebabkan nilai resistansi berkurang. Sedangkan saat arus turun maka dampaknya yakni nilai resistansi akan meningkat. Sederhananya yakni saat nilai hambatan listrik rendah maka arusnya akan semakin besar. Dan ketika hambatan listrik tinggi maka arus akan menjadi lebih kecil. Dasarnya yakni resistansi listrik mengaliri jenis dan suhu zat. Alat untuk mengukur resistansi atau hambatan listrik bernama multimeter digital. Arus, tegangan, parameter, dan sejenisnya merupakan objek yang bisa diukur. Ada beberapa macam cara menggunakan multimeter digital. Berikut ini tahapan yang bisa Anda coba praktikkan. Nyalakan instrumen lalu atur menjadi mode resistansi . Nilai resistansi target pengukuran dengan rentang secukupnya. Steker kabel tes merah pilih terminal . Sedangkan untuk steker kabel tes hitam untuk terminal COM. Kedua ujung resistor digunakan untuk menempatkan kabel uji dalam kotak. Layar LCD instrumen akan mulai menampilkan hasil pengukuran. Kabel uji resistor harus dilepas saat selesai mengukur. Alat tersebut tidak hanya digunakan untuk proses ukur, namun juga bisa mengoreksi suhu meter resistansi. Nilai Resistansi Nilai resistansi ini sendiri umumnya menggunakan satuan Ohm/Omega . Terutama yang difungsikan untuk mengukur rangkaian listrik. Nilai-nilai tersebut terangkum dalam penghantar atau konduktor. Tujuannya yakni untuk menghambat arus listrik serta mengendalikan besaran hambatan listrik. Sebagai tambahan informasi, berikut ini beberapa contoh material dan kondisi yang direkomendasikan dijadikan sebagai media penghantar listrik Material tembaga, yakni karena nilai resistansinya terbilang lebih rendah. Suhu, yakni nilai resistansi meningkat untuk membuat suhu meningkat. Panjang penghantar ini nantinya bisa digunakan untuk mengetahui nilai resistansi yang semakin tinggi. Luas penampang, yakni saat diameter semakin kecil maka nilai resistansi semakin tinggi. Untuk komponen yang difungsikan sebagai penghambat arus listrik sendiri disebut sebagai resistor. Dimana fungsi utama dari komponen ini yakni untuk melakukan proses pengurangan atau hambatan arus listrik dengan tujuan menurunkan level tegangan listrik. Sedangkan satuan resistansi yang digunakan yaitu Kilo Ohm, Mega Ohm, dan Giga Ohm. Satuan ini tentu menggunakan prefix atau SI standar internasional. Hitungannya adalah sebagai berikut Satuan Ohm 1 Giga Ohm Ohm 109 Ohm 1 Mega Ohm Ohm 106 Ohm 1 Kilo Ohm Ohm 103 Ohm Persamaan Resistansi Persamaan Resistansi Sebenarnya teori mengenai persamaan resistansi sudah ditemukan oleh George Simon Ohm sejak tahun 1825. Resistansi atau hambatan listrik dengan tegangan/voltage dan arus listrik/current nantinya dapat dijabarkan dengan Hukum Ohm. Berikut adalah rumus mencari persamaan resistensi menggunakan Hukum Ohm V = I x R atau R = V/I atau I = V/R Keterangan V voltage dalam satuan volt adalah tegangan listrik I current dalam satuan ampere adalah arus listrik R resistance dalam satuan Ohm adalah hambatan listrik Artinya, 1 ampere arus listrik mengalir sebuah komponen dengan tegangan 1 volt – resistansinya adalah 1 Ohm. Analogi yang lainnya yaitu rangkaian diberikan tegangan 24 volte dengan arus listrik 0,5 A. Hasilnya, 48 Ohm. Anda bisa menghitungnya menggunakan rumus persamaan resistansi di atas. Simbol Resistansi Simbol Resistansi Untuk simbol resistansi adalah huruf R resistance atau komponen resistor. Nah, simbol ini menentukan rumus masing-masing nilai, rumus dan persamaan resistansi. Berikut ini beberapa jenis symbol resistensi beserta rumus penghitungannya 1. Resistansi dalam hukum Ohm Resistansi dalam hukum Ohm yakni tingkat kuat arus yang masuk ke dalam dua titik akan berbanding lurus secara potensial. Kondisi ini digambarkan dalam rumus berikut I = V/R 2. Resistansi dalam konduktansi Resistansi dan hambatan arus listrik akan berbanding terbalik dengan hantaran atau konduktansi yang ada. Dimana besaran nilainya akan menghambat kuat arus listrik yang masuk. Sedangkan pengertian dasar mengenai kondutansi yakni besaran nilai yang mampu dijadikan sebagai penghantar arus listrik. Lalu untuk satuan konduktansi dalam S Siemens atau dengan simbol G. Jika dituliskan ke dalam rumus konduktansi adalah seperti berikut R = V/I atau G = I/V menjadi G = 1/R 3. Resistansi dalam kawat Menurut fisikawan Claude Pouillet dari Prancis mengenai resistansi dalam kawat. Nilai hambatan listrik yang masuk ternyata juga bisa ditentukan. Terutama oleh jenis kawat P, panjang kawat l dan luas penampang kawat A. Artinya, hambatan listrik ini akan berbanding lurus dengan panjang kawat yang tersedia. Sedangkan, hambatan akan berbanding terbalik dengan luas penampang kawat. Anda bisa menghitungnya menggunakan rumus hambatan kawat sebagai berikut R = P l/AKeterangan P m = Hambatan jenis kawat l m = Panjang kawat A m2 = Luas penampang kawat Kesimpulan dari rumus di atas yakni jika kawat yang digunakan lebih panjang diameternya maka tingkat hambatan listriknya juga akan lebih besar. Bisa diartikan kawat dengan luas penampang yang lebih besar maka akan membuat hambatan arus listriknya mengecil. 4. Resistansi konduktor Resistansi konduktor adalah ketika hambatan semakin besar, maka konduktor semakin panjang. Resistansi ini tergantung panjang, jenis, dan luas penampang. Sedangkan, luas penampang meningkat, maka resistansi berkurang atau bisa saja sirkulasi arus meningkat. Anda bisa menghitung masalah hambatan listrik menggunakan rumus persamaan resistansi tersebut. Resistansi dan Resistivitas Resistansi dan Resistivitas Resistansi dan resistivitas memiliki sedikit perbedaan. Karena resistivitas adalah hambatan konduktor dalam satuan panjang dan satuan penampang. Resistivitas juga bisa saja berbeda. Hal ini karena panjang dan ketebalan konduktornya sama. Adapun perbedaan antara resistansi dan resistivitas sebagai adalah sebagai berikut Resistansi Resistivitas Resistansi merupakan ukuran kapasitas material. Sifatnya, menahan elektron mengalir. Resistivitas merupakan ukuran material di bawah dimensi. Simbol resistansi huruf R. Simbol resistivitas huruf Yunani ƿ rho. Resistansi dengan satuan Ohm SI. Resistivitas dengan satuan ohm-meter. Pengaruh resistansi yaitu panjang, suhu material dan luas. Pengaruh resistivitas yaitu naik/turunnya suhu. Perbedaan antara resistansi dan resistivitas juga akan berbeda saat menerapkannya pada alat elektronik. Misalnya seperti resistansi hanya diterapkan pada alat pemanas. Kesimpulan Demikian pembahasan mengenai resistansi lengkap dengan rumus dan nilai-nilainya. Kesimpulannya, Anda bisa menghitung besaran hambatan listrik pada elektronik menggunakan rumus tersebut, ya? Semoga pembahasan di atas sudah cukup membantu Anda dalam memahami apa itu resistensi dan cara kerjanya.

jelaskan bagaimana daya listrik dalam kawat hambatan berubah menjadi panas